APLICACIONES DE LOS ISÓTOPOS EN MEDICINA
 

53. ¿Tienen aplicaciones médicas las radiaciones ionizantes?
Las radiaciones ionizantes tienen múltiples aplicaciones en el campo de la medicina. La especialidad denominada radiología utiliza los rayos X procedentes de un tubo de rayos catódicos para la realización de múltiples tipos de exploraciones radiológicas diagnósticos. En la especialidad de medicina nuclear se manejan diferentes tipos de isótopos no encapsulados (en forma líquida o gaseosa) que son administrados al paciente o utilizados en laboratorio en pruebas analíticas con fines eminentemente diagnósticos. En el campo de la terapia las radiaciones ionizantes se emplean para el tratamiento de tumores malignos, dando lugar a la especialidad denominada radioterapia.

Además de en estas tres especialidades las radiaciones ionizantes procedentes de isótopos radiactivos se utilizan ampliamente en el campo de la investigación médica, habiéndose realizado gran número de estudios cinéticos y metabólicos en fisiología humana y animal por medio de radiotrazadores.

El gran desarrollo de estas especialidades se debe por una parte a un mejor conocimiento de la física y aplicaciones de las radiaciones y por otra a los continuos avances en los equipos de producción, detección y utilización de las mismas. Los equipos más sofisticados tienen un elevado costo y exigen para su manejo personal multidisciplinario altamente especializado, que incluye no sólo médicos sino también físicos, radiofarmacéuticos y químicos que trabajan en estrecha colaboración. Esto hace que en ocasiones sólo se disponga de estos servicios en grandes centros médicos que sirven a grandes núcleos de población. En la actualidad en España se cuenta, tanto a nivel de sanidad pública como privada, de múltiples centros que disponen de equipos de última generación y personal bien cualificado.

 

54. ¿Qué es la medicina nuclear?
La medicina nuclear es una especialidad médica, de historia relativamente corta, unos 25 años, que utiliza las radiaciones ionizantes procedentes de los radisótopos o radionucleidos para la realización de estudios morfológicos y funcionales de numerosos órganos, así como para las determinaciones radioanalíticas de numerosas sustancias contenidas en el organismo. Para la realización de los estudios sobre los pacientes es necesaria la introducción en el organismo de una pequeña cantidad de sustancia radiactiva denominada radiofármaco, por diferentes vías, generalmente la intravenosa o bien la digestiva, inhalación, etc. Estas sustancias, por su especial afinidad, se fijan en el órgano que se desea estudiar, emitiendo radiación gamma que es detectada por un equipo denominado gammacámara cuyo detector se sitúa sobre el órgano a explorar, recibiendo los fotones procedentes del radiofármaco.

Estas señales son transformadas en impulsos eléctricos que son modulados, amplificados y procesados por medio de un ordenador adjunto al equipo, lo que permite la representación espacial del órgano, denominada gammagrafía, sobre una pantalla o placa de rayos X o la visualización de imágenes sucesivas del mismo para el estudio de una determinada función. Recientemente se cuenta con cámaras que permiten la obtención de cortes del órgano según las tres direcciones del espacio, lo que mejora la calidad de los estudios.

En algunos centros se dispone de equipos denominados de PET (tomografía de emisión de positrones) que emplean radionucleidos que emiten positrones en vez de fotones como en los métodos clásicos de medicina nuclear. La calidad de las imágenes obtenidas con estos equipos es superior a la de los convencionales, pero en la actualidad debido a su alto coste y complicada tecnología, ya que es preciso disponer de un ciclotrón al pie del equipo para producir isótopos de vida media ultracorta del orden de minutos, sólo existen unos pocos equipos comercializados en el mundo, ninguno de ellos en España hasta la actualidad.

Las ventajas fundamentales de los métodos exploratorios de medicina nuclear son el no ser peligrosos ni molestos para el paciente y el tener efectos secundarios mínimos, ya que la radiación que se recibe es igual o menor a la de estudios radiológicos de rutina.

Las técnicas analíticas denominadas radínmunoanálisis permiten la detección y cuantificación de numerosas sustancias que están en cantidades muy pequeñas en sangre u orina y que son muy difíciles de detectar por medios analíticos convencionales. Se realizan gracias a un ingenioso sistema que combina una reacción de unión antígeno-anticuerpo con el marcado con un isótopo, generalmente el yodo-125, de uno de estos dos componentes.

Aunque la medicina nuclear es una especialidad fundamentalmente diagnostica, los radisótopos no encapsulados pueden utilizarse como medio de tratamiento en aplicaciones puntuales, hablándose entonces de radioterapia metabólica. Esta consiste en administrar una dosis relativamente grande de sustancia radiactiva en forma líquida por medio de inyección o ingestión para que se acumule en el órgano o lugar tratado, donde actúa por medio de la radiación emitida sobre los tejidos en contacto próximo con ella. La aplicación más frecuente es el tratamiento de pacientes con cáncer de tiroides o hipertiroidismo y para la realización del mismo estos pacientes son generalmente ingresados en unidades de hospitalización especiales que disponen de habitaciones con medios de radioprotección y que son atendidos por personal especializado.

 

55. ¿Se producen residuos radiactivos en las actividades médicas con isótopos?
Como consecuencia de la utilización y manipulación de isótopos no encapsulados en medicina nuclear para el diagnóstico y tratamiento de pacientes, se produce una pequeña cantidad de residuos radiactivos de vida media corta y de baja concentración, que, no obstante, deben gestionarse siguiendo todos los criterios y normas legales previstos.

Los residuos procedentes de las dosis administradas y que son eliminados por los pacientes ingresados son sustancias radiactivas líquidas. Dada su vida media corta, en general tras un período de espera en depósitos protegidos pierden gran parte de su actividad, pudiendo ser vertidos en la red de desagüe previa dilución, utilizándose sistemas de vertidos lentos y controlados.

Los residuos sólidos provienen de las jeringas contaminadas, tubos y viales utilizados en técnicas analíticas, así como productos contaminados por los pacientes ingresados, como ropas de cama, pijamas y otros objetos cuya contaminación será previamente comprobada. Deben ser generalmente almacenados hasta perder su actividad en recipientes con los blindajes apropiados y sólo en el caso de persistir esta actividad a niveles valorabas, serán retirados por la Empresa Nacional de Residuos Radiactivos (ENRESA) para su almacenamiento definitivo en lugares adecuados.

En cuanto a los residuos gaseosos, vapores o partículas radiactivas en suspensión que se generan, habrá de tenerse en cuenta que los trabajadores de estas instalaciones radiactivas no superen nunca los límites permitidos de inhalación anual, utilizando sistemas de ventilación adecuados. Para la expulsión del aire contaminado deberá considerarse la posible utilización de medios de dilución o filtros con objeto de no sobrepasar los límites máximos permitidos de concentración de sustancias radiactivas en el aire.

En los servicios de medicina nuclear, considerados por la legislación como instalaciones radiactivas de segunda categoría, deben seguirse unas normas de protección radiológica para evitar riesgos de irradiación externa y de contaminación tanto en los pacientes como en el personal que trabaja en el servicio. Así mismo deberán efectuarse una serie de controles dosimétricos de contaminación de superficies, lugares y personas con la periodicidad conveniente y tener previstas una serie de actuaciones en caso de emergencia o accidente.

En los servicios de radioterapia se generan residuos sólidos en forma de fuentes encapsuladas (pilas de cobalto, agujas, alambres o semillas de material radiactivo) de muy poco volumen pero de actividad media. Debe llevarse un registro de los movimientos de cada fuente, pruebas de hermeticidad y tener previstas actuaciones ante incidentes o accidentes. La retirada de las fuentes del servicio se realizará por la empresa autorizada (ENRESA).

 

56. ¿Sabe el lector que buena parte de los productos de uso médico se esterilizan mediante radiaciones nucleares?
Las radiaciones ionizantes emitidas por los radionucleidos tienen la propiedad de inhibir la reproducción celular y, con ello, causar la muerte de microorganismos, insectos y, en general, de cualquier ser viviente, si la dosis de radiación aplicada es suficiente. Esta propiedad biocida de las radiaciones tiene muchas aplicaciones prácticas, pero entre todas destaca, por su importancia para la salud humana, la esterilización de productos de uso frecuente en clínica y en cirugía, donde se requiere un alto grado de asepsia; tal es el caso de productos como guantes, jeringuillas, gasas, sondas, cánulas, pipetas, recipientes, etc., y, en general, de cuantos productos son de "usar y tirar".

La gran ventaja de esta técnica reside en el poder de penetración que tiene la radiación gamma, como la emitida por el cobalto-60, que puede producir la esterilización de los productos a dosis relativamente bajas (25 kGy) una vez envasados y listos para el suministro, lo que evita toda posibilidad de recontaminación por manipulaciones previas al uso.

Desde el punto de vista económico es importante, también, el hecho de que los productos puedan ser fabricados utilizando ambientes "normales", en lugar de ambientes estériles (mucho más costosos), a sabiendas que la radiesterilización posterior va a permitir alcanzar grados de asepsia mayores que los requeridos por la normativa sanitaria.

Las mencionadas ventajas han hecho que la radiesterilización haya alcanzado pleno desarrollo industrial en los países más avanzados, utilizándose para ello irradiadores de cobalto-60 (y, a veces, de cesio-137) de varios millones de curios, que permiten tratar anualmente unos 3 millones de M3 de productos listos para el suministro. Con ello, la radiesterilización ha desplazado al clásico procedimiento de la fumigación con óxido de etileno, que ya ha sido prohibido en muchos países (EE.UU., Japón, Australia, y ahora en la CE), por haberse descubierto que da lugar a residuos cancerígenos, que pueden afectar a los pacientes y al personal sanitario.